Local structure of hydrated and dehydrated Prussian white cathode materials

Abstract

The sodium iron hexacyanoferrate compound with chemical formula Na2.04(2)Fe[Fe(CN)6]·2.24(2)H2O, also known as Prussian white (PW), contains disordered and dynamic water molecules that have a dualistic effect on its battery performance. Furthermore, the material exhibits severe strain when dehydrated, which over time diminishes the performance. To understand the complex role of water on the sodium ion conduction and the structural changes happening upon dehydration, local structural characterization is needed. Here, we report the first neutron total scattering study of PW. Reverse Monte Carlo (RMC) fitting reveals that local octahedral distortion of the nitrogen-bound iron octahedra contributes to the disorder of the framework. The strain observed in the dehydrated material comes from a combination of the Fe–N bond elongation and a disordered distribution of sodium throughout the larger structure. In the hydrated material, the sodium exhibits more order due to the presence of water, which constrains the sodium movement. However, the sodium ordering affects the orientation of the water molecules. In the low temperature P21/n phase, sodium orders into planes with the oxygen atoms in the water molecules being in the plane, while the hydrogen atoms are pointing away from the sodium plane. In the room temperature R[3 with combining macron] phase, the sodium and water are less ordered despite similar frameworks. Sodium can take a wide range of positions, especially if no water molecule blocks its way, to obtain optimal bonding conditions. These results show that the relationship between sodium and water is co-dependent, and demonstrate that the local structure of framework materials has a crucial link to their properties.

Graphical abstract: Local structure of hydrated and dehydrated Prussian white cathode materials

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
20 Aug 2025
Accepted
01 Dec 2025
First published
01 Dec 2025
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2026, Advance Article

Local structure of hydrated and dehydrated Prussian white cathode materials

I. Nielsen, M. Eremenko, Y. Zhang, M. G. Tucker and W. R. Brant, J. Mater. Chem. C, 2026, Advance Article , DOI: 10.1039/D5TC03143E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements