Low-temperature transformation of mechanochemically treated oyster shells into nanocrystalline apatites

Abstract

A technique combining an extended mechanochemical treatment of biogenic calcium carbonate (bCC) with a one-pot hydrothermal method was used for the first time to prepare nanocrystalline apatite. When calcitic bCC from oyster shell waste was subjected to dry milling for 1 hour (DM) the crystallite size of calcite was decreased from 92 to 14 nm, and the minimum temperature to achieve the complete conversion to apatite (Tmin) decreased from 160 °C to 80 °C. In contrast, wet milling (18 h) induced polymorphism and amorphization, yielding calcite, aragonite, and amorphous calcium carbonate, with crystallite sizes of 7 nm for calcite and 13.7 nm for aragonite. The Tmin decreased from 160 °C to 40 °C. Both transformations occurred via brushite as an intermediate metastable phase. Kinetic experiments evidenced that DM-bCC transformed faster than WM-bCC at Tmin, achieving 98% versus 82% after 4 days, even though the complete transformation took 7 days. Both bCCs and the derived Ap nanoparticles demonstrated cytocompatibility with MS1 endothelial cells and m17.1 ASC murine mesenchymal stem cells. This synthetic approach offers a cost-effective, eco-friendly (without releasing CO2), sustainable, and scalable (by using already established glass reactor technology rather than costly autoclaves) solution for valorising shells waste.

Graphical abstract: Low-temperature transformation of mechanochemically treated oyster shells into nanocrystalline apatites

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
29 Oct 2025
Accepted
06 Dec 2025
First published
12 Dec 2025
This article is Open Access
Creative Commons BY-NC license

RSC Sustainability, 2026, Advance Article

Low-temperature transformation of mechanochemically treated oyster shells into nanocrystalline apatites

C. Triunfo, F. Oltolina, A. D'Urso, R. Fernández-Penas, G. Falini, A. Follenzi and J. Gómez-Morales, RSC Sustainability, 2026, Advance Article , DOI: 10.1039/D5SU00830A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements