Mechano-stimuli-responsive engineered device mimicking native anisotropy towards tissue regeneration

Abstract

Tissue-related disorders continue to present critical clinical challenges due to their limited self-repair abilities and rising global incidence. Conventional grafting techniques and implant materials are suffering from significant drawbacks, including immune rejection, donor site morbidity, and lack of bioactivity. Herein, this study explores the development of a smart, biomimetic scaffold that combines a piezoelectric polymer polyvinylidene fluoride (PVDF) with a demineralized extracellular matrix derived from fish scales. The demineralization process effectively removes heavy metal contaminants while preserving the collagen-rich matrix, making it suitable for scaffold applications. PVDF, known for its biocompatibility, flexibility, and electroactive properties, was electrospun at varying concentrations to achieve nanofibrous membranes with tailored anisotropic and electromechanical characteristics. These PVDF nanofibers were layered onto D-FS to create hybrid scaffolds that mimic the hierarchical architecture and dynamic responsiveness of native skeletal tissues. Based on SEM and FTIR analyses, 12% w/v PVDF demonstrated uniform fiber distribution with minimal bead formation. Physico-chemical analyses confirmed its enhanced crystallinity and structural alignment, while electrical assessments demonstrated adequate piezoelectric performance under mechanical stimulation, including device fabrication. Biological evaluations, including the MTT assay, hemolysis analysis, LIVE–DEAD staining, and protein adsorption study, were conducted; the results indicate that C-FS exhibits cytotoxicity, whereas D-FS does not. This work presents a promising strategy for the development of next-generation tissue engineering scaffolds with the potential to eliminate the need for secondary surgeries.

Graphical abstract: Mechano-stimuli-responsive engineered device mimicking native anisotropy towards tissue regeneration

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
19 Jun 2025
Accepted
13 Nov 2025
First published
10 Dec 2025
This article is Open Access
Creative Commons BY-NC license

RSC Sustainability, 2026, Advance Article

Mechano-stimuli-responsive engineered device mimicking native anisotropy towards tissue regeneration

S. Das, S. M. Juloori, M. Swarnakar, M. Pal Chowdhury and S. Dhara, RSC Sustainability, 2026, Advance Article , DOI: 10.1039/D5SU00448A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements