Droplet electrocoalescence as a robust tool for in situ examination of hydrogel microparticles in microfluidic devices

Abstract

Nowadays hydrogel microparticles find numerous applications in material science and biological engineering such as drug delivery systems, cell carriers, etc. Droplet microfluidics provides an efficient tool for producing monodisperse microparticles, however, optimization of synthesis conditions remains challenging. Here, we developed a simple and easy-to-use method for in situ visual assessment or quantitative characterization of hydrogel crosslinking inside water-in-oil droplets. It is based on the difference in the merging dynamics of water-in-oil emulsions and crosslinked hydrogel microparticles in an external electric field and is compatible with various designs of microfluidic devices, types of materials and crosslinking mechanisms. Integrating a metal electrode into a microfluidic device with a flow-focusing droplet generator, we investigated how water-in-oil droplet merging occurs and then demonstrated that electrocoalescence can be used for in situ characterization of the polyacrylamide, polyethylene glycol diacrylate and alginate microparticles during their crosslinking. We suggest that implementation of the droplet electrocoalescence for in situ control of hydrogel crosslinking technique paves the way to achieve efficient, stable and reproducible synthesis of hydrogel microparticles, which is highly demanded for biomedical applications.

Graphical abstract: Droplet electrocoalescence as a robust tool for in situ examination of hydrogel microparticles in microfluidic devices

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Oct 2025
Accepted
26 Nov 2025
First published
03 Dec 2025

Soft Matter, 2026, Advance Article

Droplet electrocoalescence as a robust tool for in situ examination of hydrogel microparticles in microfluidic devices

A. Tiushkevich, N. Filatov, P. Pleshakov and A. Bukatin, Soft Matter, 2026, Advance Article , DOI: 10.1039/D5SM01068C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements