Physical effects of hydrogel coatings on seed germination

Abstract

Hydrogel coatings are increasingly applied to seeds to enhance hydration and support germination; however, their outcomes remain inconsistent, and the underlying physical mechanisms remain unclear. Here, we dissect the hydrogel–seed interface as a soft material system, isolating how water imbibition, mechanical confinement, and oxygen permeability govern germination dynamics. Using artificial and natural seeds, we show that water uptake follows classical Lucas–Washburn dynamics and is not impeded by the hydrogel coating. Instead, germination delays arise from two key physical effects: the mechanical stiffness of the coating and its restriction of gas exchange. In Petri dishes, soft coatings accelerate germination, suggesting minimal resistance to radicle emergence; however, this advantage disappears in soil, where all coatings delay germination regardless of stiffness. Controlled-pressure experiments in transparent soil rule out mechanical load as the dominant factor. Instead, selectively exposing the hilum and micropyle—critical sites for gas exchange—restores germination timing. These findings demonstrate that hydrogel-coated seeds are primarily limited by oxygen diffusion, not water transport, revealing how soft material interfaces modulate biological function. This work provides design principles for soft coatings that balance hydration, mechanical compliance, and gas permeability in bio-integrated systems.

Graphical abstract: Physical effects of hydrogel coatings on seed germination

Article information

Article type
Paper
Submitted
15 Sep 2025
Accepted
04 Dec 2025
First published
22 Dec 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2026, Advance Article

Physical effects of hydrogel coatings on seed germination

T. M. Phillips, J. Green, A. Sanz-Saez and J. Louf, Soft Matter, 2026, Advance Article , DOI: 10.1039/D5SM00932D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements