Cellular mechanosensing on a cell-scale stiffness gradient substrate

Abstract

Cells have the ability to sense and respond to various mechanical cues from their immediate surroundings. One of the manifestations of such a process, which is also known as “mechanosensing”, is directed cell migration. Various biological processes have been shown to be controlled by extracellular matrix (ECM) stiffness. Substrates with a high stiffness gradient have been used as a platform to investigate cellular motion in response to mechanical cues. However, creating a cell scale stiffness gradient in such a cell adhesion friendly substrate still remains elusive. In this study, we present a simple and versatile method for fabricating substrates with a periodically varying stiffness profile at the cellular scale, featuring customizable high stiffness gradients. Fibroblast cells, when presented with such continuous yet anisotropic variation of stiffness, preferentially position their nuclei in stiffer regions of the substrate and align themselves along the direction of the lowest rigidity gradient. Furthermore, when the rigidity of the substrate is sufficiently high, cells exhibit less sensitivity to stiffness gradients, with their elongation and nuclear positioning becoming independent of stiffness variations. Overall, our experimental results reveal new insights into the process of cellular mechanosensing where the cell-scale gradient drives strong positional and orientational order.

Graphical abstract: Cellular mechanosensing on a cell-scale stiffness gradient substrate

Supplementary files

Article information

Article type
Paper
Submitted
09 Jun 2025
Accepted
29 Nov 2025
First published
17 Dec 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2026, Advance Article

Cellular mechanosensing on a cell-scale stiffness gradient substrate

I. Bhattacharjee, G. V. Soni and B. R. Sarangi, Soft Matter, 2026, Advance Article , DOI: 10.1039/D5SM00592B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements