Unveiling structural forms of Ru in WOx-template catalysts for efficient acidic PEM water electrolysis

Abstract

In acidic systems, elucidating the structural forms and mechanisms of Ru that achieve high activity and stability upon combination with oxides offers valuable insights for designing efficient and durable PEM water electrolysis catalysts. In this study, different Ru forms, including single atoms, sub-nanometric clusters, and heterostructures, were strategically introduced into a WOx template to systematically investigate their effects on OER performance. In situ characterization techniques (ATR-SEIRAS, DEMS, and in situ Raman) combined with theoretical calculations reveal that the d–π interactions within the continuously coupled orbitals introduced by subnanometer Ru clusters accelerate electronic delocalization, thereby optimizing the interfacial water structure and hydrogen-bond network and enhancing *OH adsorption. Meanwhile, this interaction facilitates the deprotonation of intermediates, maintains a high surface coverage of *O species, and modulates the post-adsorption electronic structure, which collectively promote *O–*O coupling and the Oxide Path Mechanism (OPM) pathway, endowing the catalyst with superior activity and stability. The resulting RuSNCs-WOx exhibits outstanding acidic OER performance, achieving 10 mA cm−2 at only 171 mV overpotential and retaining excellent stability over 1000 hours. In PEM electrolyzer tests, it outperforms conventional RuO2, sustaining 1 A cm−2 operation for over 1000 hours.

Graphical abstract: Unveiling structural forms of Ru in WOx-template catalysts for efficient acidic PEM water electrolysis

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
16 Dec 2025
Accepted
23 Jan 2026
First published
03 Feb 2026
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2026, Advance Article

Unveiling structural forms of Ru in WOx-template catalysts for efficient acidic PEM water electrolysis

X. Zeng, A. Cai, J. Pei, G. Liu, W. Li, X. Xiong, D. Zhou and N. Yao, Chem. Sci., 2026, Advance Article , DOI: 10.1039/D5SC09860B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements