Modular Synthesis of Benzothiophene-Fused Pentalene Reveals Substituent-Dependent Antiaromaticity

Abstract

Antiaromatic π-electron systems provide unique electronic features arising from the cyclic conjugation of 4n π-electrons, yet synthetic access to strongly antiaromatic heteroarene-fused scaffolds remains limited. Here we report a general and scalable synthetic route to benzothiophene-fused pentalenes via the first thiophene analogue of Brand’s bicyclo[3.3.0]octadiene-1,4-dione intermediate. The pre-installation of the bicyclic five-membered-ring core at an early stage of synthesis enables efficient annulation of benzothiophene moieties and late-stage diversification at the 1,4-positions through the 1,2-addition of organometallic nucleophiles, followed by optimized dehydration. This strategy affords a series of benzothiophene-fused pentalenes bearing diverse aryl, heteroaryl, and alkynyl substituents in practical yields, with isolation by simple filtration. The benzothiophene-fused pentalenes thus obtained exhibit strong antiaromatic character that correlates with electronic effects, consistent with the topological charge stabilization rule. This work establishes a versatile platform for probing substituent-dependent antiaromaticity and for designing functional materials based on strongly antiaromatic π-systems.

Supplementary files

Article information

Article type
Edge Article
Submitted
28 Nov 2025
Accepted
09 Jan 2026
First published
12 Jan 2026
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2026, Accepted Manuscript

Modular Synthesis of Benzothiophene-Fused Pentalene Reveals Substituent-Dependent Antiaromaticity

R. Isogai, K. Yasui and A. Fukazawa, Chem. Sci., 2026, Accepted Manuscript , DOI: 10.1039/D5SC09325B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements