Highly efficient CO2 hydrogenation to long-chain linear α-olefins via CO intermediate enrichment over Na/FeMn/ZrO2 catalysts
Abstract
Although significant progress has been made in the oriented conversion of CO2 to long-chain linear α-olefins (LAOs), cooperatively regulating C–O bond activation and C–C coupling via tailored catalyst microstructures remains a persistent challenge. Herein, a highly efficient Na/FeMn/ZrO2 catalyst has been fabricated through a covalent anchoring strategy, which achieves a LAOs/C4+ selectivity of 68% and an O/P ratio of 5.1 in CO2 hydrogenation to LAOs. There is a pronounced interaction between Fe species and MnCO3 in Na/FeMn/ZrO2 catalysts, which promotes the formation and stabilization of iron carbides. Meanwhile, Fe5C2–ZrO2 interfaces possess strong adsorption capacity for CO intermediates, resulting in the accumulation of generated CO on the Fe5C2 active sites. The higher CO concentration on the Fe5C2–ZrO2 interface is beneficial to the C–C coupling reaction, thereby significantly improving the production of high-value olefins. These results will provide a theoretical basis and guidance for developing efficient catalysts for the oriented conversion of CO2 to LAOs.

Please wait while we load your content...