Pyrene-based conjugated porous polymers as photocatalysts for oxidative cycloaddition of phenols

Abstract

Photocatalytic heterogeneous organic transformation represents an ecofriendly and sustainable method for addressing persistent energy and environmental challenges. Conjugated porous polymer (CPP)-based materials have recently emerged as promising photocatalysts for diverse organic transformations, offering a sustainable alternative to homogeneous systems reliant on precious inorganic or organic dyes. Herein, we designed two pyrene-based CPPs for visible-light photocatalysis, featuring fluoro- or methyl-substituted fluorenes as distinct units. These CPPs act as metal-free, visible-light-activated, reusable heterogeneous photocatalysts for synthesizing benzofused oxa-heterocycles via photooxidized [4 + 2] and [3 + 2] cycloadditions of phenols with alkenes. Notably, DFT calculations demonstrate that the fluoro-block CPP with its larger dipole moment can achieve more efficient photoinduced charge separation, due to the stronger electron-attractive force. Consequently, FF-Py-CPP exhibited superior photocatalytic activity compared to MF-Py-CPP, achieving excellent yields, high diastereoselectivity, and good recyclability in the syntheses of chromanes and dihydrobenzofuran.

Graphical abstract: Pyrene-based conjugated porous polymers as photocatalysts for oxidative cycloaddition of phenols

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Nov 2025
Accepted
09 Dec 2025
First published
12 Jan 2026
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2026, Advance Article

Pyrene-based conjugated porous polymers as photocatalysts for oxidative cycloaddition of phenols

S. Liu, X. Liu, X. Gu, S. Dong, N. Huang, L. Shi and J. Jiang, Chem. Sci., 2026, Advance Article , DOI: 10.1039/D5SC08900J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements