Highly-Destabilized Ligand Field Excited States of Iron Carbene Complexes and Their Relation to Charge Transfer State Lifetimes

Abstract

Lifetimes of photoexcited charge transfer (CT) states in transition metal chromophores are influenced by low-lying ligand field (LF) excited states, especially for 3d metal complexes. To manipulate interactions between LF and CT states, it is important to be able to control LF excited state energies using tunable synthetic variables. In this report, we use Fe 2p3d L3-edge resonant inelastic X-ray scattering (RIXS) to measure LF excited state energies of three homoleptic iron chromophores coordinated by strong-field N-heterocyclic carbenes (NHCs). We investigate the effect of oxidation state and ligand scaffold on LF energies and covalency parameters. A cyclometalated bis(NHC) ligand affords both high LF excited state energies (and thus high 10Dq) as well as high metal-ligand covalency compared to other iron complexes with very strong-field ligands. However, for the set of complexes investigated, we do not observe meaningful correlation between the LF excited state energies and the CT excited state lifetimes. These results illustrate that targeting long-lived CT excited states necessitates control of multiple molecular excited state properties, with destabilization of the LF excited state energies proving necessary, but insufficient, to control the CT excited state lifetime in Fe carbene complexes.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
10 Oct 2025
Accepted
14 Dec 2025
First published
12 Jan 2026
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2026, Accepted Manuscript

Highly-Destabilized Ligand Field Excited States of Iron Carbene Complexes and Their Relation to Charge Transfer State Lifetimes

R. X. Hooper, B. I. Poulter, J. Schwarz, M. Barakat, K. Kunnus, K. J. Nelson, A. Ilic, C. García-Mateos, R. Chowdhury, J. Uhlig, K. Wärnmark, E. Jakubikova, A. Cordones and K. Gaffney, Chem. Sci., 2026, Accepted Manuscript , DOI: 10.1039/D5SC07843A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements