Phosphorescent iridium complexes activated by endogenous zinc as a mitochondrial DNA nuclease for stimulation of the cGAS-STING pathway
Abstract
Zinc is a crucial element in cellular processes, and its homeostasis has intricate relationships with the initiation, progression, and therapeutic intervention of cancer. Activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been proven to be an effective strategy for cancer immunotherapy. Herein, we report four phosphorescent iridium complexes (Ir1–Ir4) with zinc chelating ligands. Among them, Ir1 can bind and image mitochondrial chelatable zinc ions via phosphorescence-lifetime responses, consequently modulating the expression of zinc-regulatory proteins. Furthermore, the in situ formed heteronuclear metal complex Ir1-Zn2 shows nuclease mimetic activities, capable of hydrolyzing mitochondrial DNA (mtDNA) to release mtDNA fragments for the activation of the cGAS-STING pathway. In conclusion, we designed a mitochondria-targeting phosphorescent Ir(III) complex with dual functions in dysregulation of zinc homeostasis and generation of nuclease in situ, which provides an innovative approach to stimulate the cGAS-STING pathway.

Please wait while we load your content...