Solvation or not solvation: tunneling reactions of molecules embedded in cryogenic matrices

Abstract

Noble gas cryogenic matrices have been widely employed to study the tunneling reactivity of embedded molecules. We regard cryogenic matrices as an elementary type of solvent, because the interactions between solvent molecules and between the solvent and the solute are limited to weak, non-directional forces. Nevertheless, they remain very interesting for fundamental solvation studies, as the tunneling reactivity varies considerably for different noble gases. Here, we present a multidimensional nuclear quantum approach based on the semiclassical transition state theory approximation with a quantum mechanics/molecular mechanics potential to investigate the effect of different cryo-matrix environments on the H-tunneling CO bond rotamerization reaction. Specifically, we show how the rotamerization reaction rate of glycine, formic acid, acetic acid, and their deuterated variants changes with different types of cryo-matrix embedding and in the gas phase. After reproducing the available experimental results, we show that cryogenic matrices indeed play a crucial role in the tunneling process, which is not limited to washing out or quenching tunneling. We conclude that condensed phase matrices can enhance the reaction rate by interacting with substituents at the α-carbon site when present. Our approach opens the possibility for future studies of more complex solvation scenarios to gain physical insight into the effect of solvation on tunneling-dominated reactions.

Graphical abstract: Solvation or not solvation: tunneling reactions of molecules embedded in cryogenic matrices

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Sep 2025
Accepted
09 Nov 2025
First published
17 Nov 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2026, Advance Article

Solvation or not solvation: tunneling reactions of molecules embedded in cryogenic matrices

G. Mandelli, C. Aieta and M. Ceotto, Chem. Sci., 2026, Advance Article , DOI: 10.1039/D5SC06818E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements