Issue 6, 2026, Issue in Progress

Topological interface states and nonlinear thermoelectric performance in armchair graphene nanoribbon heterostructures

Abstract

We investigate the emergence and topological nature of interface states (IFs) in N-AGNR/(N − 2)-AGNR/N-AGNR heterostructure (AGNRH) segments lacking translational symmetry, focusing on their relation to the end states (ESs) of the constituent armchair graphene nanoribbon (AGNR) segments. For AGNRs with R1-type unit cells, the ES numbers under a longitudinal electric field follow the relations N = NA(B) × 6 + 1 and N = NA(B) × 6 + 3, whereas R2-type unit cells exhibit (NA(B) + 1) ESs. The subscripts A and B denote the chirality types of the ESs. The Stark effect lifts ES degeneracy and enables clear spectral separation between ESs and IFs. Using a real-space bulk boundary perturbation approach, we show that opposite-chirality states hybridize through junction-site perturbations and may shift out of the bulk gap. The number and chirality of IFs in symmetric AGNRHs are determined by the difference between the ESs of the outer and central segments, NO and NC, according to NIF,β = |NO,B(A)NC,A(B)|, where β labels the chirality. Depending on whether NO > NC or NC > NO, the resulting IFs acquire B- or A-chirality, respectively. Calculated transmission spectra Image ID:d5ra09657j-t1.gif reveal that AGNRHs host a topological double quantum dot (TDQD) when IFs originate from the ESs of the central AGNR segment. Using an Anderson model with effective intra-dot and inter-dot Coulomb interactions, we derive an analytical expression for the tunneling current through the TDQD via a closed-form transmission coefficient. Thermoelectric analysis shows that TDQDs yield enhanced nonlinear power output in the electron-dilute and hole-dilute charge states, with Coulomb blockade suppressing thermal current but not thermal voltage. The thermal power output of the TDQD is significantly enhanced by nonlinear effects, even under strong electron Coulomb interactions.

Graphical abstract: Topological interface states and nonlinear thermoelectric performance in armchair graphene nanoribbon heterostructures

Article information

Article type
Paper
Submitted
13 Dec 2025
Accepted
12 Jan 2026
First published
21 Jan 2026
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2026,16, 4680-4693

Topological interface states and nonlinear thermoelectric performance in armchair graphene nanoribbon heterostructures

D. M. T. Kuo, RSC Adv., 2026, 16, 4680 DOI: 10.1039/D5RA09657J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements