A computational investigation of the thermal elimination chemistry of β-borylated sulfoxides. Sulfenic acid vs. boryl sulfenate elimination

Abstract

Electronic structure calculations were performed to assess how a β-boryl substituent modulates barriers for the classical Ei elimination of sulfoxides. Four main boron substituents were investigated: H, Me, F and OMe. Across the series, methanesulfenic-acid elimination exhibits reduced activation free energies and enthalpies as the boron functionality accepts electron density from the Cβ–H bond, promoting a more asynchronous transition state with advanced Cβ–H cleavage and O–H formation and correspondingly less S–Cα bond rupture relative to the benchmark ethyl methyl sulfoxide transition state. Nevertheless, β-boryl substrates of the 1B family access lower-energy minima that lead preferentially to boryl sulfenate elimination: the corresponding ΔG values are 9.5–15.5 kcal mol−1 lower than for the competing proton-transfer (sulfenic-acid) pathway. Replacing methyl with vinyl or phenyl lowers ΔG by 1.9–4.9 kcal mol−1 through enhanced stabilization of developing electron density at sulfur. A comparison of common boronic esters (catechol, pinacol, BMIDA) for both proton-transfer and boronic-ester-transfer pathways shows catechol (Bcat) gives the lowest barriers, whereas BMIDA is distinctive in that its methanesulfenic acid elimination resembles that of methyl ethyl sulfoxide, and boryl-sulfenate elimination is disfavoured owing to loss of intramolecular N → B coordination. Collectively, β-boryl substitution lowers Ei barriers via electron-acceptor stabilization and biases reaction manifolds toward boryl sulfenate elimination, with the extent governed by conjugation patterns and ester identity.

Graphical abstract: A computational investigation of the thermal elimination chemistry of β-borylated sulfoxides. Sulfenic acid vs. boryl sulfenate elimination

Supplementary files

Article information

Article type
Paper
Submitted
10 Sep 2025
Accepted
19 Dec 2025
First published
05 Jan 2026
This article is Open Access
Creative Commons BY-NC license

Org. Biomol. Chem., 2026, Advance Article

A computational investigation of the thermal elimination chemistry of β-borylated sulfoxides. Sulfenic acid vs. boryl sulfenate elimination

E. A. Nicol and A. L. Schwan, Org. Biomol. Chem., 2026, Advance Article , DOI: 10.1039/D5OB01455G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements