Revisiting ion transport through micropores: significant and non-negligible surface transport

Abstract

From a theoretical perspective, ion transport through micrometer or nanometer-sized pores under a cross-pore electric field can be described well by the Hall equation, involving only the bulk conductivity, if the solution is not too dilute. For dilute solutions, it is predicted that the surface conduction will become important, especially in nanopores. Nonetheless, this remains unsupported by experiments, especially for micropores, where the experimentally observed ion conductance is intuitively thought to be dominated by bulk conduction. Herein, our electrical measurements of ion transport through silicon nitride pores having diameters ranging from sub-µm up to a few µm show that the surface conduction can be significant and non-negligible in such large pore systems, especially at solution concentrations lower than 1 mM. In the latter case, the observed surface conductivity of the order of 1 nS can dominate over the bulk contribution, yielding a Dukhin length comparable to or even larger than the pore size and a Dukhin number up to 10. The surface conduction can be further enhanced by covering the silicon nitride surface with two-dimensional (2D) crystals such as graphene, graphene oxide, or monolayer titania sheets. The resulting surface conductivity is seen to increase upon increasing the solution concentration and can be increased by up to one or two orders of magnitude. Our observations provide insights into ion transport in micropore systems and suggest the possibility of exploiting surface conduction in such large pores for new technologies that were previously believed to apply only to nanopores.

Graphical abstract: Revisiting ion transport through micropores: significant and non-negligible surface transport

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
14 Aug 2025
Accepted
09 Dec 2025
First published
24 Dec 2025

Nanoscale Horiz., 2026, Advance Article

Revisiting ion transport through micropores: significant and non-negligible surface transport

W. Zhang, A. Zhang, W. Zhou, Y. Ji, Z. Xu and P. Sun, Nanoscale Horiz., 2026, Advance Article , DOI: 10.1039/D5NH00582E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements