Surfactant-mediated preparation of fully waterborne robust superamphiphobic coatings for anti-icing

Abstract

Superamphiphobic coatings, capable of repelling both water and low-surface-tension liquids, hold immense potential for applications in self-cleaning, anti-fouling, and anti-icing. However, their widespread adoption is hindered by reliance on organic solvents, poor mechanical durability, and complex fabrication processes. Herein, fully waterborne superamphiphobic coatings are developed using waterborne polyurethane and fluorinated polysiloxane-modified silica nanoparticles (F-POS@SiO2). The F-POS@SiO2 dispersion is synthesized via acid-catalyzed hydrolysis and condensation of silanes in water mediated by fluorinated surfactants, eliminating the need for any organic solvents. When combined with waterborne polyurethane and applied sequentially via simple spray-coating, the resulting coatings exhibit hierarchical micro-/nanostructures and low surface energy. These features collectively endow the coatings with excellent static and dynamic repellency toward water and oils, robust mechanical durability, chemical resistance, thermal and UV stability, and anti-icing behavior. The coatings maintain performance across a range of substrates, offering a sustainable and scalable strategy for fabricating superamphiphobic surfaces with broad practical potential.

Supplementary files

Article information

Article type
Communication
Submitted
21 Jul 2025
Accepted
05 Jan 2026
First published
06 Jan 2026

Nanoscale Horiz., 2026, Accepted Manuscript

Surfactant-mediated preparation of fully waterborne robust superamphiphobic coatings for anti-icing

Y. Ren, B. Li and J. Zhang, Nanoscale Horiz., 2026, Accepted Manuscript , DOI: 10.1039/D5NH00516G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements