Surfactant-mediated preparation of fully waterborne robust superamphiphobic coatings for anti-icing
Abstract
Superamphiphobic coatings, capable of repelling both water and low-surface-tension liquids, hold immense potential for applications in self-cleaning, anti-fouling, and anti-icing. However, their widespread adoption is hindered by reliance on organic solvents, poor mechanical durability, and complex fabrication processes. Herein, fully waterborne superamphiphobic coatings are developed using waterborne polyurethane and fluorinated polysiloxane-modified silica nanoparticles (F-POS@SiO2). The F-POS@SiO2 dispersion is synthesized via acid-catalyzed hydrolysis and condensation of silanes in water mediated by fluorinated surfactants, eliminating the need for any organic solvents. When combined with waterborne polyurethane and applied sequentially via simple spray-coating, the resulting coatings exhibit hierarchical micro-/nanostructures and low surface energy. These features collectively endow the coatings with excellent static and dynamic repellency toward water and oils, robust mechanical durability, chemical resistance, thermal and UV stability, and anti-icing behavior. The coatings maintain performance across a range of substrates, offering a sustainable and scalable strategy for fabricating superamphiphobic surfaces with broad practical potential.
Please wait while we load your content...