Polystyrene Nanoplastics as PFAS Carriers and Their Interactions with Zwitterionic Phospholipid Membranes

Abstract

The co-occurrence of per-and polyfluoroalkyl substances (PFAS) and nanoplastics (NPs) poses a synergistic threat to environmental and human health, yet the molecular mechanisms governing PFAS-NP complexation and membrane interactions remain unclear. Using atomistic molecular dynamics simulations, we investigated the adsorption of neutral polytetrafluoroethylene (PTFE) and anionic perfluorinated compounds (perfluorooctanoic acid, PFOA, and perfluorooctanesulfonic acid, PFOS) on polystyrene NPs (3.1 and 6.7 nm) and their interactions with 1-palmitoyl-2-oleoylsn-glycero-3-phosphocholine (POPC) membranes. Polystyrene NPs act as carriers, transporting PFAS molecules to the lipid/water interface, where PFAS attachment modifies NP interfacial behavior. PFAS adsorption on the NP surface is driven by hydrophobic and fluorophilic interactions. Neutral PTFE exhibits inhomogeneous, partially penetrated adsorption, while anionic PFOS and PFOA form relatively homogeneous adsorption layers due to electrostatic repulsion among their anionic headgroups. In the POPC membrane, the exposed trimethylammonium groups with non-hydrogen-bonded water prevail over phosphate groups with hydrogen-bonded water, reducing the zwitterionic membrane's resistance to NP adsorption. Consequently, surface hydration hinders attachment of neutral bare and PTFE-coated NPs, while anionic PFOS-coated NPs rapidly adsorb via electrostatic attraction to the positively charged POPC trimethylammonium groups, overcoming the hydration barrier. PFOA-coated NPs adsorb transiently; however, PFOA detachment exposes the NP core, weakening NPlipid interactions and leading to NP desorption and insertion of detached PFOA molecules. The addition of 0.1 M KCl does not significantly alter the interfacial behavior of small PFAS-NP complexes.

Supplementary files

Article information

Article type
Paper
Submitted
17 Nov 2025
Accepted
16 Jan 2026
First published
16 Jan 2026
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2026, Accepted Manuscript

Polystyrene Nanoplastics as PFAS Carriers and Their Interactions with Zwitterionic Phospholipid Membranes

J. Fang, T. Qiao, P. Sarker, X. Qin, Z. Size, M. J. Uline and T. Wei, Nanoscale Adv., 2026, Accepted Manuscript , DOI: 10.1039/D5NA01071C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements