Targeted nanocarriers integrating photodynamic and photothermal therapy: a paradigm shift in rheumatoid arthritis treatment

Abstract

Rheumatoid Arthritis (RA) is a crippling autoimmune disease characterized by gradual cartilage loss, bone degeneration, and persistent joint inflammation. Widespread adverse effects and ineffective drug distribution hamper the traditional treatment modalities. Recent progress in RA treatment has been advanced by nanocarrier-based phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT). These therapies work by inducing necrosis or apoptosis in inflammatory cells through the generation of reactive oxygen species via PDT or localized heat production by PTT. This also leads to a reduction in pro-inflammatory cytokines and modulates macrophage polarization (M1 to M2). This dual approach shows enhanced efficacy by targeting inflammatory cytokines while preserving healthy tissue function, providing site-specific delivery, and improving bioavailability. Preclinical investigations have demonstrated that functionalized nanocarriers for targeting macrophages and synovial fibroblasts show improved drug delivery and therapeutic outcomes. While clinical trials of PDT in refractory RA patients have shown promising results in targeting synovial hyperplasia and inflammatory markers with minimal side effects, the challenges of limited light penetration, hypoxic joint microenvironments, and poor target specificity reduce the efficacy of PDT. This review focuses on multifunctional nanoplatforms that integrate PDT and PTT therapies with nanocarriers, advanced light delivery systems, and phototherapy devices to optimise RA management. These innovations aim to enhance therapeutic precision, reduce symptoms, and improve patient adherence. It also explores cutting-edge advancements in RA treatment strategies, addresses current limitations, and proposes future research directions to bridge the gap between preclinical success and clinical application.

Graphical abstract: Targeted nanocarriers integrating photodynamic and photothermal therapy: a paradigm shift in rheumatoid arthritis treatment

Article information

Article type
Review Article
Submitted
10 Jul 2025
Accepted
31 Oct 2025
First published
19 Dec 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2026, Advance Article

Targeted nanocarriers integrating photodynamic and photothermal therapy: a paradigm shift in rheumatoid arthritis treatment

S. Priya, D. Sharma, K. K. Jain, S. Chutani and G. Singhvi, Nanoscale Adv., 2026, Advance Article , DOI: 10.1039/D5NA00671F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements