Force-Driven Architectonics of Inorganic Nanomaterials: Pathways to Smart and Functional Interfaces
Abstract
The deliberate structuring of inorganic nanomaterials through mechanical forces offers a powerful alternative to conventional synthesis, enabling solvent-free, energy-efficient, and scalable design strategies. Rather than serving only as a synthetic shortcut, force-driven processing is increasingly recognized as an architectonic tool a means of directing matter into well-defined architectures that integrate top-down shaping with bottom-up assembly. This review develops a conceptual framework of architectonics under mechanical activation, treating external force as a design parameter that dictates structure formation across multiple length scales. Methodological platforms such as ball milling, extrusion, and hybrid force-stimuli systems are systematically assessed, alongside mechanistic insights spanning multiscale reaction pathways, computational modeling, and AI-enabled predictions. The potential of this approach to generate smart and functional interfaces is highlighted through applications in catalytic and energy conversion processes, biomedical nanomedicine, and electronic or sensing devices. Finally, we discuss current limitations particularly gaps in mechanistic understanding, predictive control, and scalability and outline future opportunities to advance force-driven architectonics as a foundation for nextgeneration functional inorganic nanomaterials.
Please wait while we load your content...