Relationships between milling input energy and chemical reactivity for mechanochemical activation of clays

Abstract

Mechano-chemical activation is of rapidly growing interest for producing cementitious constituents from clays. The chemical reactivity of clay minerals is enhanced during intensive grinding, due to mechano-chemical dehydroxylation and mechanically-induced amorphisation. The most widely used grinding apparatus for laboratory-scale studies is a planetary ball mill. It is still largely unknown whether activation efficacy is critically dependent on any individual milling parameter, or whether trade-offs are possible between different parameters. In this study a first principles approach, previously applied to alloy amorphisation, is adopted to estimate the energy of an individual collision event and the total milling input energy. Using a combination of primary data generated through experiments and secondary data from literature, a set of nearly 100 datapoints was analysed. Rapid increases in chemical reactivity were generally observed for <100 kJ g−1 of modelled milling energy input, with a plateau beyond this value. The relationship between chemical reactivity and modelled energy input was well fitted by an exponential type function. For the same modelled milling energy input, a higher gain in chemical reactivity was achieved for the 1 : 1 clay minerals compared to the 2 : 1 clay minerals or mixtures of different clay minerals. No strong trends were observed with individual collision energy, with no clear evidence for the existence of a threshold collision energy. The modelled milling input energy was more effective for predicting reactivity increase than measured energy consumption by the mill. Within the ranges tested, increasing ball : powder ratio or rotation speed seemed to be more energetically efficient at increasing reactivity, compared to increasing milling duration. Results from this study can also aid in selection of milling equipment for scaling up this process.

Graphical abstract: Relationships between milling input energy and chemical reactivity for mechanochemical activation of clays

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
29 Jun 2025
Accepted
10 Nov 2025
First published
17 Dec 2025
This article is Open Access
Creative Commons BY license

RSC Mechanochem., 2026, Advance Article

Relationships between milling input energy and chemical reactivity for mechanochemical activation of clays

A. T. M. Marsh, S. Krishnan, S. Rahmon, S. A. Bernal and X. Ke, RSC Mechanochem., 2026, Advance Article , DOI: 10.1039/D5MR00088B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements