Selective Mechanochemical Conversion of Post-Consumer Polyethylene Terephthalate Waste into hcp and fcu UiO-66 Metal-Organic Frameworks
Abstract
Single-use plastics strongly contribute to plastic pollution, and less than 10% of plastic waste is recycled globally. Here, we present a selective mechanochemical protocol for converting post-consumer polyethylene terephthalate (PET) transparent bottles and coloured textile waste into the porous metal-organic framework (MOF) UiO-66 materials. We used time-resolved in situ (TRIS) synchrotron powder X-ray diffraction and Raman spectroscopy to monitor the depolymerization of PET during ball milling. To convert disodium terephthalate to UiO-66, we developed base and base-free synthetic routes that lead to fcu and hcp UiO-66 phases, respectively, including the first ever synthesis of hcp UiO-66 by mechanochemistry. Our results demonstrate the potential of mechanochemistry to selectively access fcu and hcp UiO-66 phases using post-consumer PET waste.
Please wait while we load your content...