Synthesis and evaluation of lupeol-derived triterpenic azines as potential neuroprotective agents

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the accumulation of α-synuclein aggregates. Current treatments are primarily symptomatic, highlighting the need for new neuroprotective strategies. Natural triterpenes have shown promise in neurodegenerative diseases, and structural modifications can enhance their bioactivity. In this study, we obtained a series of new triterpenic azines (4a–4p) from lupeol, optimizing reaction conditions through microwave-assisted synthesis. The neuroprotective potential of these derivatives was evaluated in human neuroblastoma IMR-32 cells exposed to 6-hydroxydopamine (6-OHDA), a widely used in vitro model of PD. Compounds 4c, 4m, and 4n significantly prevented 6-OHDA-induced cytotoxicity, restoring cell viability at 10 and 50 μM to control levels. Since ferroptosis is a cell death mechanism implicated in PD, we further examined the effects of these compounds in N27 dopaminergic neurons exposed to the ferroptosis inducers RSL3 and erastin. Among the tested derivatives, 4c exhibited a remarkable protective effect against RSL3-induced ferroptosis, which was comparable to ferrostatin-1, displaying an IC50 value of 9.1 μM. These findings support the development of triterpenic azines as neuroprotective agents and warrant further investigation in preclinical PD models.

Graphical abstract: Synthesis and evaluation of lupeol-derived triterpenic azines as potential neuroprotective agents

Supplementary files

Article information

Article type
Research Article
Submitted
26 Aug 2025
Accepted
01 Nov 2025
First published
06 Nov 2025

RSC Med. Chem., 2026, Advance Article

Synthesis and evaluation of lupeol-derived triterpenic azines as potential neuroprotective agents

F. A. Musso, N. P. Alza, G. A. Salvador and M. B. Faraoni, RSC Med. Chem., 2026, Advance Article , DOI: 10.1039/D5MD00753D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements