SlipChip: From Principle to Applications
Abstract
The SlipChip is a versatile microfluidic platform that enables precise control of fluidic connections through the relative sliding of two microstructured plates, without requiring external pumps or valves. SlipChip facilitates fluid aliquoting, mixing, and partitioning via a simple sliding operation induced microfluidic reconfiguration. Various designs have been developed and applied to nucleic acid assays, protein crystallization, protein analysis, single-cell analysis, and materials synthesis. Compared with conventional microfluidics, SlipChip offers advantages such as simple fluidic manipulation, on-chip reagent preloading, portability, and cost-effective fabrication in diverse materials (glass, PDMS, plastic, paper). This review summarizes the fluidic principles, device fabrication, and applications of SlipChip, highlighting representative architectures, driving mechanisms, and material considerations. We also address current limitations of SlipChip technology, particularly in terms of assembly precision and dependence on manual operation. Looking forward, advances in materials engineering, device automation, and artificial intelligence are anticipated to enhance assembly reliability and support increasingly autonomous workflows. These developments are poised to significantly broaden the role of SlipChip in systems biology, clinical diagnostics, and personalized medicine. Overall, SlipChip represents a simple, robust, and accessible microfluidic platform suitable for diverse research applications as well as clinical diagnostics.
Please wait while we load your content...