SlipChip: From Principle to Applications

Abstract

The SlipChip is a versatile microfluidic platform that enables precise control of fluidic connections through the relative sliding of two microstructured plates, without requiring external pumps or valves. SlipChip facilitates fluid aliquoting, mixing, and partitioning via a simple sliding operation induced microfluidic reconfiguration. Various designs have been developed and applied to nucleic acid assays, protein crystallization, protein analysis, single-cell analysis, and materials synthesis. Compared with conventional microfluidics, SlipChip offers advantages such as simple fluidic manipulation, on-chip reagent preloading, portability, and cost-effective fabrication in diverse materials (glass, PDMS, plastic, paper). This review summarizes the fluidic principles, device fabrication, and applications of SlipChip, highlighting representative architectures, driving mechanisms, and material considerations. We also address current limitations of SlipChip technology, particularly in terms of assembly precision and dependence on manual operation. Looking forward, advances in materials engineering, device automation, and artificial intelligence are anticipated to enhance assembly reliability and support increasingly autonomous workflows. These developments are poised to significantly broaden the role of SlipChip in systems biology, clinical diagnostics, and personalized medicine. Overall, SlipChip represents a simple, robust, and accessible microfluidic platform suitable for diverse research applications as well as clinical diagnostics.

Article information

Article type
Critical Review
Submitted
20 Nov 2025
Accepted
27 Jan 2026
First published
28 Jan 2026

Lab Chip, 2026, Accepted Manuscript

SlipChip: From Principle to Applications

Y. Luo, W. Yuan, S. Jung and F. Shen, Lab Chip, 2026, Accepted Manuscript , DOI: 10.1039/D5LC01069A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements