3D-printed self-sensing magnetically actuated microfluidic chip for closed-loop drug delivery

Abstract

Microfluidic lab-on-a-chip technology has shown great potential in various fields such as bioscience, medical diagnostics, and environmental monitoring. However, its widespread adoption has been hindered by challenges in functional integration, operational autonomy, and manufacturing scalability. To address these limitations, we present a 3D-printed self-sensing magnetically actuated microfluidic (SMAM) chip designed for autonomous bioanalysis. This innovative device utilizes stereolithography apparatus (SLA) 3D printing to rapidly prototype and integrate microchannel networks alongside with a magnetically driven functional module. The chip employs magnetic actuation for precise, wireless manipulation of fluids within the microchannels, eliminating the need for bulky external pumps. Additionally, the system features an integrated self-sensing mechanism, enabling flow monitoring and on-chip analyte detection. The SMAM chip demonstrates exceptional dual-function performance, achieving a high pumping flow rate of up to 972 µL/min and a good piezoresistive sensitivity of 43.1 MPa⁻¹. We first demonstrate its system-level utility by assembling the chip into a modular, wirelessly monitored microfluidic platform with an integrated flow rectifier. Furthermore, its potential for therapeutic interventions is validated through a proof-of-concept of an untethered device for magnetically guided, on-demand drug release. This work provides a novel approach for developing intelligent analytical devices, promising to enable new paradigms in automated biological research and diagnostics.

Supplementary files

Article information

Article type
Paper
Submitted
29 Oct 2025
Accepted
20 Jan 2026
First published
24 Jan 2026

Lab Chip, 2026, Accepted Manuscript

3D-printed self-sensing magnetically actuated microfluidic chip for closed-loop drug delivery

P. Li, Y. Li, J. Zhan, D. Wang, R. Zhang and F. Liu, Lab Chip, 2026, Accepted Manuscript , DOI: 10.1039/D5LC01006C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements