Lab-on-a-chip for biomarker detection: advances, practical applications, and future perspectives
Abstract
Lab-on-a-chip (LoC) technology has emerged as a transformative platform for biomarker detection, integrating multiple analytical processes within a single microfluidic device. Advances in microfabrication and fluid dynamics have enabled the development of miniaturized, automated assays characterized by high sensitivity, rapid analysis, and portability. These advances facilitate diverse applications, including nucleic acid and protein analysis, as well as multiplexed biomolecular detection. LoC systems are particularly impactful for early cancer screening, infectious disease diagnostics, and real-time health monitoring. Integration with multi-omics approaches further enhances their capacity to elucidate complex disease mechanisms, thereby advancing precision medicine. Continued innovation in materials science, device architecture, and system integration promises to enhance the diagnostic performance, cost-effectiveness, and reliability of LoC systems across clinical settings. This review summarizes recent progress in LoC-based biomarker detection, highlighting innovations in fabrication, assay integration, and practical applications. It also discusses prevailing challenges and future research directions, offering insights into how LoC technology is poised to shape the next generation of precision diagnostics.

Please wait while we load your content...