The evolution of nanopore measurements: from biological out-of-plane pores to plastic in-plane pores
Abstract
Nanopore sensing provides an ideal strategy for the label-free detection of single molecules in a variety of application scenarios. Working under the principle of resistive pulse sensing (RPS), nanopores consist of constrictions with sub-100 nm dimensions to enable single-molecule resolution by matching pore size to target dimensions (scaling); the optimal signal-to-noise ratio (SNR) results when the electrically biased pore is comparable in size to the molecule to be analyzed. When single molecules are electrokinetically transported through such remarkably small pores, they temporarily disturb the flux of ions moving through them, generating unique signals. These signals vary based upon the molecules' shape, size, orientation, and other physicochemical properties. Nanopores are generally divided into two main categories owing to their fabrication approach and material: biological and solid state. While biological nanopores have been the dominant sensor format due to their exceptionally small size, solid-state nanopores can demonstrate high performance characteristics attributed to their rigidity, stability, and high versatility in shape, material, and configuration. This review will explore the state-of-the-art in biological and solid-state nanopores and their abilities to detect and identify single biomolecules in a label-free manner. We will also review two topographical configurations of nanopore sensors; in-plane and out-of-plane sensors. The evolution of nanopore sensing will be reviewed, starting with out-of-plane biological sensors and progressing to in-plane sensors fabricated in plastics via replication technologies.

Please wait while we load your content...