A chemical–electrochemical cascading strategy for the efficient synthesis of 2,5-furandicarboxylic acid and its methyl ester from 2-furoic acid and CO2

Abstract

The electrocatalytic upgrading of biomass-derived furanics offers a sustainable route to high-value monomers for polymer manufacturing. Herein, we report a bromine-mediated electrochemical platform that converts 2-furoic acid and CO2 into 2,5-furandicarboxylic acid (FDCA) and its dimethyl ester, dimethyl furan-2,5-carboxylate (FDME), under ambient conditions with faradaic efficiency exceeding 80% for the critical debromocarboxylation step. Specifically, our process involves sequential esterification and bromination of 2-furoic acid to yield methyl 5-bromofuran-2-carboxylate (MBFC), followed by electrochemical debromo-carboxylation on Ag to afford 5-(methoxycarbonyl)-2-furoic acid (MFCA). Subsequent hydrolysis or esterification would furnish the synthesis of FDCA and FDME, respectively. Comprehensive mechanistic studies, including in situ infrared spectroscopy, single-crystal facet analysis, and computational investigation, reveal that the key debromocarboxylation reaction proceeds through a two-electron transfer pathway, with Ag (100) and Ag (311) facets exhibiting the lowest activation barriers. Importantly, coupling cathodic debromocarboxylation with anodic bromide oxidation enables a paired electrolysis configuration in which the generated Br2 can be recycled for substrate bromination, eliminating the need for a sacrificial anode and enhancing electron economy. Such an integrated, redox-balanced system establishes a scalable and environmentally benign route for converting renewable furanics and CO2 into polymer precursors, highlighting the potential of bromine-mediated paired electrolysis for sustainable electrosynthetic manufacturing.

Graphical abstract: A chemical–electrochemical cascading strategy for the efficient synthesis of 2,5-furandicarboxylic acid and its methyl ester from 2-furoic acid and CO2

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Oct 2025
Accepted
15 Dec 2025
First published
17 Dec 2025
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2026, Advance Article

A chemical–electrochemical cascading strategy for the efficient synthesis of 2,5-furandicarboxylic acid and its methyl ester from 2-furoic acid and CO2

R. Li, M. Zhong, M. Biswas, N. Jiang, A. Mannodi-Kanakkithodi and Y. Sun, Green Chem., 2026, Advance Article , DOI: 10.1039/D5GC05661F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements