Fallen-leaf-sensitized biosolar oxygenation of hydrocarbons

Abstract

Lignocellulosic wastes are naturally abundant carbon resources but have been underutilized due to their complex structure and recalcitrant nature. They require energy- and water-intensive processes, such as thermal, chemical, and/or mechanical pretreatments, for their valorization. Here, we report a new function of raw tree waste for driving the solar-powered oxygen reduction reaction (ORR) and biocatalytic oxyfunctionalization of hydrocarbons. We reveal that various lignocellulosic wastes, such as fallen leaves, waste wood, and wastepaper, can produce hydrogen peroxide (H2O2) using only O2, water, and light without any pretreatment. In particular, fallen leaves from Platanus trees exhibit high rates of ORR, which is ascribed to their superior photophysical properties, such as higher light extinction, longer charge relaxation lifetime, and lower electron transfer resistance. We treated the fallen leaves of Platanus with H2O2-dependent unspecific peroxygenase to produce optically pure alcohols and epoxides through the stereoselective hydroxylation and epoxidation of hydrocarbons. The waste-enzyme hybrid catalyst achieved record-high turnover frequency and total turnover number. This study establishes raw biomass wastes as green photocatalysts for sustainable photobiosynthesis, presenting a successful example of waste-to-wealth conversion.

Graphical abstract: Fallen-leaf-sensitized biosolar oxygenation of hydrocarbons

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Sep 2025
Accepted
02 Jan 2026
First published
07 Jan 2026
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2026, Advance Article

Fallen-leaf-sensitized biosolar oxygenation of hydrocarbons

M. Lee, J. Jang, J. Cha, S. H. Lee, F. Hollmann, K. Won and C. B. Park, Green Chem., 2026, Advance Article , DOI: 10.1039/D5GC04630K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements