Boundaries for a global resilient energy transition

Abstract

This article discusses the challenges to a resilient energy transition. The power shortage in the Iberian Peninsula in 2025 illustrates the limitations of a resilient energy sector. To the best of our knowledge, the reason for the collapse of the Spanish electric grid has not been identified as a single system failure but was likely caused by a cascade of events that led to the instability of the grid (frequency) and the shutdown. Fortunately, the grid was restored within a day. A prolonged shortage could have had a massive impact, compromising the food supply, fresh-water supply and critical infrastructure (i.e. hospitals) for 60 million citizens since off-grid energy storage only covers short periods. Broader implementation of large energy storage could have been the key to stabilising the electric grids and preventing a shutdown. Hydrogen is promising for large energy storage to improve the safe operation/implementation of renewable energies/UNSDG7 (PV/solar/wind/hydropower) and may prevent a variation in power supply and grid stability. Considering the required scale-up for the infrastructure (UNSDG9 + 12) along with the essential role of academia/education (UNSDG4) as the fundamental keys for sustainability, these factors are limiting, and the requirements to enable a fast energy transition are alarming. Data on energy consumption and GHG emissions discussed here are exemplary for selected European countries (France/Germany/Portugal/Spain/Sweden/UK) and neighbouring Morocco/Africa. The countries’ strategies for the energy transition take into account different geographical/topological/natural/climatic limitations and opportunities. We have learnt from this blackout and previous events that the number and capacities/connectivity to neighbouring countries are crucial for blackout prevention and that implemented energy storage is important to stabilise the electric grid but remains insufficient for net-zero based on renewable energies. Islands, countries with large coastal regions or isolated countries (mountains) with limited connectivity to neighbouring grids are more sensitive to blackouts. National strategies need to consider the societal/industrial requirements to enable a net-zero transition. The assessment targets defossilisation for energy supply/transport, the requirements for the energy sector and large energy storage facilities (i.e. H2 storage) and national infrastructures for its realisation. The goal of net-zero-by-2050 is challenged by natural resources, and delays are due to the limited infrastructure/workforce in the STEM field provided by the respective national education and academic sectors.

Graphical abstract: Boundaries for a global resilient energy transition

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Perspective
Submitted
26 Aug 2025
Accepted
26 Nov 2025
First published
16 Dec 2025

Green Chem., 2026, Advance Article

Boundaries for a global resilient energy transition

M. H. G. Prechtl, E. C. B. A. Alegria, H. Belchior Rocha, E. Justino, J. F. Gomes and J. F. Puna, Green Chem., 2026, Advance Article , DOI: 10.1039/D5GC04501K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements