Recent developments in polysaccharide-based technologies for phosphorus removal and recovery from wastewater: A review

Abstract

Phosphorus (P) is an essential nutrient for the biological function of both animals and plants, as well as a main constituent of industrial products, including crop fertilizers, detergents, chemicals, pharmaceuticals, food and feed, and construction materials. In recent years, the imbalance between P mining and its excessive, inefficient use has led to resource depletion, runoff and water contamination. P contamination predominantly sources from agricultural, industrial, and domestic waste worldwide. The overabundance of P in water bodies has exacerbated eutrophication and related health problems, affecting aquatic life and posing risks to humans. To address global concerns about the depletion of phosphate rock (PR) reserves and alleviate associated environmental and health hazards, various physical, chemical, and biological methods are currently employed to remove and recover P from wastewater. Among these, adsorption, chemical precipitation, membrane filtration, the use of microorganisms, ion exchange, and crystallization are considered the most widely employed techniques. These conventional methods present several drawbacks, including strict control of operation, limited sensitivity to phosphate ions (PO₄³⁻) at low concentrations, high chemical and energy consumption, poor mechanical and chemical stability, limited scalability, and high costs. Recently, biopolymers, primarily polysaccharide-based technologies, have emerged as sustainable, eco-friendly, low-cost, and innovative alternatives for removing and recovering P from aqueous environments, addressing the prevailing challenges and gaps associated with conventional methods. Polysaccharides and their derivatives exhibit enhanced P removal efficiency, renewability, scalability, high mechanical and chemical strength, and non-toxicity. Although polysaccharides have been widely investigated for wastewater treatment, their involvement and mechanisms in P removal and recovery have not been systematically analyzed. Therefore, this study consolidates recent findings on polysaccharide-based materials, namely cellulose, chitosan, starch, and alginate, for the effective removal and recovery of P, filling an unaddressed area in the literature. The current review also provides a synopsis of current trends and future advancements in polysaccharide-based technologies for the removal and recovery of P. Furthermore, this review serves as a guide to the development of practical and sustainable waste and resource management systems for P, subsequently contributing to the circular bioeconomy.

Supplementary files

Article information

Article type
Critical Review
Submitted
23 Aug 2025
Accepted
26 Dec 2025
First published
29 Dec 2025

Environ. Sci.: Water Res. Technol., 2026, Accepted Manuscript

Recent developments in polysaccharide-based technologies for phosphorus removal and recovery from wastewater: A review

M. Farahath, M. Kandanapitiye, D. C. Manatunga, R. S. Dassanayake and M. Vithanage, Environ. Sci.: Water Res. Technol., 2026, Accepted Manuscript , DOI: 10.1039/D5EW00812C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements