Thermal hydrolysis on the edge of thermophilic anaerobic digestion: a pilot-scale operation experience

Abstract

This study investigated the integration of the thermal hydrolysis process (THP) as a pretreatment with thermophilic anaerobic digestion (TAD) at a pilot scale using sludge from a full-scale wastewater treatment plant. This is the first pilot-scale evaluation of THP–TAD employing thermophilic inoculum adapted to hydrolysed sludge, offering critical insights into the potential of THP (155 °C, 30 minutes) to enhance TAD (55 °C) performance and contribute to sustainable sludge management. This study assessed the effects of THP on process stability at reduced hydraulic retention times (HRTs), biogas production, sludge dewaterability, and antibiotic resistance gene (ARG) reduction. The THP achieved a sludge disintegration degree of 26.8%, enabling a 50% reduction in HRT without compromising the reactor stability or process efficiency. At an HRT of 12 days, the specific biogas production averaged 0.28 Nm3 kg−1 VSin. Additionally, compared with traditional processes with longer HRTs, THP significantly enhanced ARG reduction, achieving a maximum reduction of 3.5 log units, while improving sludge hygienization and maintaining volatile solids reduction (VSR). Despite performance improvements, THP–TAD requires higher energy input, underscoring the need for optimization strategies. This study demonstrated that THP–TAD is a robust and effective approach for intensifying anaerobic digestion, offering notable reductions in capital costs (digester volume) while addressing critical environmental challenges such as ARG mitigation. Further investigations into sludge thickening and energy efficiency optimization are necessary to fully realize the potential of this technology as a cornerstone of sustainable wastewater management.

Graphical abstract: Thermal hydrolysis on the edge of thermophilic anaerobic digestion: a pilot-scale operation experience

Supplementary files

Article information

Article type
Paper
Submitted
19 May 2025
Accepted
05 Dec 2025
First published
11 Dec 2025
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Water Res. Technol., 2026, Advance Article

Thermal hydrolysis on the edge of thermophilic anaerobic digestion: a pilot-scale operation experience

A. Cardova, Z. Deng, J. M. Budatala, L. Appels, V. Kouba, M. Srb and P. Jenicek, Environ. Sci.: Water Res. Technol., 2026, Advance Article , DOI: 10.1039/D5EW00456J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements