Minor influence of climbing hall characteristics on rubber-derived compound contamination highlights a need for material-level solutions
Abstract
Climbing shoe abrasion generates fine rubber particles, leading to elevated concentrations of rubber-derived compounds (RDCs) in airborne particulate matter and settled dust of indoor climbing halls, in some cases comparable to levels measured near high-traffic roads. Indoor climbing halls therefore represent a hotspot of RDC exposure for visitors and employees. While the health implications remain uncertain, several RDCs present in climbing halls have demonstrated toxicity in vitro and in animal studies. Previous work, limited to a small number of facilities, left open whether climbing hall characteristics can mitigate RDC contamination. Here, we analyzed more than 200 samples of settled dust and foothold powder (abrasion material) collected from 41 climbing halls across 10 countries. RDCs were detected in every sample, confirming their ubiquity. Unsupervised analyses (hierarchical clustering, principal component analysis) revealed distinct patterns in concentrations and profiles, but supervised approaches (redundancy analysis, partial least squares, univariate correlations) showed only weak associations with hall characteristics. These results demonstrate that hall design and operation exert only a minor influence on RDC levels, underscoring that effective mitigation will require material-level solutions, specifically safe and sustainable-by-design (SSbD) innovations in the material used in climbing shoe soles to replace substances of concern with safer alternatives.
Please wait while we load your content...