Occurrence, ecological impact, and exposure risk of emerging contaminant REEs in a coastal river

Abstract

The growing demand for rare earth elements (REEs) in high-tech applications has elevated their concentrations in aquatic environments. However, comprehensive investigations into their ecological and human health risks remain limited. Forty-two river water samples from the Jiulong River basin, a representative coastal watershed, were analyzed to elucidate the occurrence, distribution, and risks of REEs. The inverse distance weighting (IDW) analysis revealed distinct spatial heterogeneity, typical fractionation between heavy and light REEs (HREEs and LREEs), and pronounced Ce and Eu anomalies. Redundancy analysis (RDA) indicated that REE concentrations were influenced by both natural geochemical processes and human activities. The key novelty of this work lies in the combined ecological risk assessment of ΣREE, highlighting the significance of mixture toxicity over individual-element evaluation. Additionally, the age-differentiated health risk assessment demonstrated that children are more susceptible to LREEs and Y exposure, although all hazard quotient (HQ) values remained below 1. Several tributaries (West river and upper North river) exhibited ΣREE risk quotient (RQ) values exceeding 1, indicating localized ecological concerns. These findings provide new insights into REE geochemical behavior and cumulative risk mechanisms in coastal rivers, establishing an integrated framework linking spatial geochemical characteristics with multi-scale risk assessments of REE contamination in coastal aquatic systems.

Graphical abstract: Occurrence, ecological impact, and exposure risk of emerging contaminant REEs in a coastal river

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2025
Accepted
05 Dec 2025
First published
23 Dec 2025

Environ. Sci.: Processes Impacts, 2026, Advance Article

Occurrence, ecological impact, and exposure risk of emerging contaminant REEs in a coastal river

S. Ma and G. Han, Environ. Sci.: Processes Impacts, 2026, Advance Article , DOI: 10.1039/D5EM00549C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements