Mobility of nitrogen in ashes and soils impacted by wildfires in northern California and Nevada

Abstract

Wildfires drastically alter biogeochemical cycling and transport of nutrient elements, including nitrogen (N), from terrestrial to aquatic ecosystems, with the potential to degrade water quality. Understanding the impact of characteristics of wildfire-derived ashes and burned soils on the mobilization of N is essential for effectively managing wildfires and mitigating adverse effects on watershed functions. This study quantified the mobility of N in soils and ashes influenced by wildfires in the northern California/Nevada region in the western United States (Dixie, Beckwourth, and Caldor fires) and the impact of soil/ash characteristics. The mobile fraction of N ranged from 0.025–0.070 for the ashes, and the mobile fraction of N was composed of 13.1–39.6% as NO3, up to 0.011% as NO2, 0.004–86.9% as NH3/NH4+, and up to 49.4% as dissolved organic N. The speciation indicates possible nitrification occurring during the wildfires, but suggests no substantial denitrification. The mobile fraction of N was 11.3 ± 7.4 times that of organic carbon (OC), due to the high mobility of inorganic N (mainly NO3 and NH3/NH4+) and nitrogenous organic compounds. The mobile N fraction was associated with redox reactions of iron during wildfires, and was regulated by the redox reactivity of OC. N mobility in the ashes was lower than in control soils, potentially due to the transformation in the speciation of N. However, the total amount of mobile N was increased by wildfire, with the amount of increase being closely related to the severity of wildfires. Overall, wildfires lead to more mobile N, including both organic and inorganic N regulated by redox reactions and severity of wildfires, with subsequent concerns for water quality and water/wastewater treatment processes.

Graphical abstract: Mobility of nitrogen in ashes and soils impacted by wildfires in northern California and Nevada

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
11 Jul 2025
Accepted
19 Nov 2025
First published
20 Nov 2025
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Processes Impacts, 2026, Advance Article

Mobility of nitrogen in ashes and soils impacted by wildfires in northern California and Nevada

T. Numan, A. Shahriar, S. Lokesh, A. Timilsina, S. Basyal, Y. Raeofy, S. R. Poulson, V. Samburova and Y. Yang, Environ. Sci.: Processes Impacts, 2026, Advance Article , DOI: 10.1039/D5EM00533G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements