A multifunctional reconfigurable terahertz chiral metasurface based on VO2 and graphene

Abstract

Despite advancements in high integration and miniaturization, terahertz (THz) devices still face challenges such as limited functionality, tunability, and narrow application ranges. To resolve the above concerns, we present a multifunctional reconfigurable THz chiral metasurface based on vanadium dioxide (VO2) and graphene. This structure exploits VO2's phase transition and graphene's electrical tunability, enabling multifunctional responses. The metasurface exhibits a triple-band circular dichroism (CD) response within 1.0–3.5 THz, with peaks at 1.62 THz, 2.89 THz, and 3.19 THz, reaching values of 0.944, 0.83, and 0.88, respectively. Dynamic switching of CD peak numbers is achieved through the synergistic control of VO2 and graphene. Under linearly polarized light incidence, the metasurface shows a single-band linear dichroism (LD) response in the 4.0–4.2 THz range, with a peak value of 0.9 at 4.093 THz. The intensity of the LD response can be reversibly tuned by adjusting the Fermi level of graphene and the incident polarization angle. Additionally, the metasurface efficiently converts polarization under both x-polarized and left-handed circularly polarized light. This multifunctional metasurface offers new opportunities for THz applications, such as CD supermirrors, intelligent switches, chiral photodetectors, and polarization digital imaging systems.

Graphical abstract: A multifunctional reconfigurable terahertz chiral metasurface based on VO2 and graphene

Article information

Article type
Paper
Submitted
01 Jan 2026
Accepted
28 Jan 2026
First published
02 Feb 2026

Dalton Trans., 2026, Advance Article

A multifunctional reconfigurable terahertz chiral metasurface based on VO2 and graphene

H. Xu and Z. Cui, Dalton Trans., 2026, Advance Article , DOI: 10.1039/D6DT00001K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements