Crystallographic evidence of a trinuclear (salen)manganese(iv/iii/iv)–μ-oxo formed during catalytic C(sp3)–H oxidation reactions

Abstract

The formation of manganese–oxo catalysts involved in C(sp3)–H bond oxidation was explored in the targeted synthesis of (salen/salophen)manganese complexes that varied axial ligand identity and varied oxidation state of the manganese center. Isolated compounds included dinuclear (salen/salophen)manganese(III)–μ-hydroxo and trinuclear (salen)manganese(IV/III/IV)–μ-oxo, the latter of which formed by oxidation with catalytically relevant oxidant iodosylbenzene. The X-ray structure of trinuclear complex (salen)manganese(IV/III/IV)–μ-oxo indicated a Mn(IV)–O–Mn(III)–O–Mn(IV) motif, with nearly linear Mn–O–Mn angles of 166.19(12)° and 172.47(15)°, Mn(IV)–O bond lengths of 1.948(2) and 1.998(2) Å, and Mn(III)–O bond lengths of 2.102(2) and 2.118(2) Å. All well-defined (salen/salophen)manganese hydroxo and oxo compounds served as precatalysts for oxidation of C(sp3)–H substrates 9,10-dihydroanthracene (>99% conversion), fluorene (52–70% conversion), and phenylcyclohexane (with lower 18–23% conversion), albeit with lower rate of activity for the isolated trinuclear μ-oxo compound, allowing its assignment as an off-cycle catalyst aggregate. These data supported the proposal of a manganese(III/V) cycle for C(sp3)–H oxidation, which involved monomerization of the dinuclear (salen)manganese(III)-μ-hydroxo catalyst prior to rate-determining C(sp3)–H activation.

Graphical abstract: Crystallographic evidence of a trinuclear (salen)manganese(iv/iii/iv)–μ-oxo formed during catalytic C(sp3)–H oxidation reactions

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2025
Accepted
10 Dec 2025
First published
11 Dec 2025
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2026, Advance Article

Crystallographic evidence of a trinuclear (salen)manganese(IV/III/IV)–μ-oxo formed during catalytic C(sp3)–H oxidation reactions

B. Paul, K. Dabare, J. D. Bocarsly and L. R. Mills, Dalton Trans., 2026, Advance Article , DOI: 10.1039/D5DT02844B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements