Advanced solar-driven CO2 photothermal–electrocatalytic co-reduction system design and research

Abstract

The efficient reduction of CO2 is significant for achieving carbon neutrality and renewable fuel synthesis. However, CO2 thermostatic systems are limited by energy utilization efficiency, while high-temperature electrocatalysis is limited by the need for inlet preheating of the material. Considering the existence of high-grade thermal energy at the outlet of thermostatic CO2 not utilized, the article proposes a combined thermal–electrocatalytic CO2 reduction system, which can utilize high-temperature products of thermostatic CO2 reduction for further electrocatalytic co-electrolysis of H2O as well as CO2, and at the same time solves the problems of lower efficiency of thermostatic reduction as well as the need of pre-heating for electrocatalytic reduction. Mathematical models of the two subsystems were developed, and thermodynamic analyses were performed. The results show that the efficiency of the thermostatic reduction part could be optimized by designing the reaction parameters, and the maximum efficiency could reach 25.42%, while the electrolytic efficiency of the electrocatalytic part could reach 99.21%. The electrocatalytic efficiency of the coupled system can be increased by 24.84% to 95.80%. And when the two systems are coupled to catalyze CO2, the overall efficiency of the system can be increased by 29.00%.

Graphical abstract: Advanced solar-driven CO2 photothermal–electrocatalytic co-reduction system design and research

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Jul 2025
Accepted
02 Nov 2025
First published
21 Nov 2025

Catal. Sci. Technol., 2026, Advance Article

Advanced solar-driven CO2 photothermal–electrocatalytic co-reduction system design and research

J. Song, J. Du, F. Wang, G. Zhang, Y. Fan, H. Yi, Y. Shuai, D. Li and L. Fan, Catal. Sci. Technol., 2026, Advance Article , DOI: 10.1039/D5CY00892A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements