Rotational excitation of molecules in the regime of strong ro-vibrational coupling: Comparison between an optical centrifuge and a transform-limited pulse
Abstract
We investigate theoretically the ability of an optical centrifuge -a laser pulse whose linear polarization is rotating at an accelerated rate, to control molecular rotation in the regime when the rigid-rotor approximation breaks down due to coupling between the vibrational and rotational degrees of freedom. Our analysis demonstrates that the centrifuge field enables controlled excitation of high rotational states while maintaining relatively low spread along the vibrational coordinate. We contrast this to the rotational excitation by a linearly polarized Gaussian pulse of equal spectral width and pulse energy which, although comparable to the centrifuge-induced rotation, is unavoidably accompanied by a substantial broadening of the vibrational wavepacket.
Please wait while we load your content...