Structural and chemical properties of Pt-rich PtxZry nanoalloys

Abstract

Density functional theory (DFT) simulations have been performed to study the structure and physico-chemical properties of bimetallic PtxZry nanoclusters, for stoichiometries rich in platinum, and sizes ranging from Pt3Zr to Pt72Zr24. For each cluster, the search for the most stable structural conformations was performed using a mixed approach where a family of stable isomers was first determined by means of a genetic algorithm based on a modified Sutton–Chen semiempirical potential; subsequently, that family of conformations was relaxed by performing DFT calculations. This procedure results in cluster geometries which reproduce reasonably well the ordering and atomic packing present in the bulk Pt–Zr alloys. The binding energies and electronic structures were studied as a function of both stoichiometry and cluster size; as a result, we identified some clusters with enhanced stability, such as Pt5Zr2 or Pt9Zr3. The analysis of the densities of states and local reactivity indicators highlights the strong intermetallic character of the Pt–Zr bonding, with large charge transfer from Zr to Pt atoms. The Pt–Zr interaction also induces a sizable weakening of the ability of Pt sites to bind CO, making these bimetallic clusters less sensitive to poisoning by carbon monoxide.

Graphical abstract: Structural and chemical properties of Pt-rich PtxZry nanoalloys

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2025
Accepted
18 Nov 2025
First published
19 Nov 2025
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2026, Advance Article

Structural and chemical properties of Pt-rich PtxZry nanoalloys

L. M. Molina and J. A. Alonso, Phys. Chem. Chem. Phys., 2026, Advance Article , DOI: 10.1039/D5CP02864G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements