A preformed 1-D {Cu II2}n helical chain as precursor to a decanuclear 0-D {Cu II8Mn II2} cluster: synthesis, structure and magnetism
Abstract
The Schiff base ligand, N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2), was initially employed in both homometallic CuII and heterometallic MnII/CuII coordination chemistry. A 1-D helical chain, [CuII2(sacb)2(MeOH)]n (1), and a decanuclear 0-D heterometallic cluster, [CuII8MnII2(OH)4(sacb)8(H2O)2] (2), were synthesized and fully characterized. Complex 2 is one of the two highest nuclearity MnII/CuII complexes reported to date and exhibits a unique {Cu8Mn2(μ3-OH)4(μ-OR)6(μ3-OR)2(μ-O2CR)2}6+ core composed of two oppositely oriented pentanuclear {Cu4Mn} units, each featuring two vertex-sharing {Cu2Mn} triangles. The presence of the {Cu2(sacb)2} fragment in both species suggests a templating role of the preformed chain 1 in the assembly of molecular cluster 2. Variable-temperature dc magnetic susceptibility studies reveal predominant antiferromagnetic interactions between CuII⋯MnII and CuII⋯CuII centers, with exchange coupling constants: J1 = −16.5(1) cm−1, J2 = −35.1(5) cm−1 and J3 = +0.7(3) cm−1. These findings highlight the utility of preformed oligonuclear and polymeric 3d-metal species as building blocks for the preparation of heterometallic 3d/3d′ polynuclear complexes with novel architectures and tailored physicochemical properties.
- This article is part of the themed collection: Articles behind the 2026 journal covers

Please wait while we load your content...