Gamma-FIT-PNAs as sensitive RNA probes

Abstract

A variety of oligonucleotide-based probes have been developed for specific and selective sensing of RNA and DNA. Among these, FIT-PNAs (forced intercalation-peptide nucleic acids) and FIT probes (DNA- and RNA-based sensors) have been studied for a variety of RNA biomarkers in cell culture and tissues, and in vivo. FIT-PNAs and FIT probes are RNA/DNA sensors that exhibit fluorescence upon sequence-specific RNA/DNA hybridization. Several synthetic approaches have been successfully applied to increase the brightness and selectivity of these molecules, including the introduction of cyclopentane (cp) modified PNA monomers (cpPNA) as well as locked nucleic acids (LNAs—for FIT probes). In this report, we have explored the biophysical properties of FIT-PNAs that are modified with gamma-L-serine PNAs (γPNAs). We found that introducing a single γ-PNA flanking the fluorophore (BisQ) in the FIT-PNA sequence is sufficient to achieve a 46-fold increase in fluorescence for the PNA:RNA duplex, similarly to cpPNA. Interestingly, when two γ-PNAs flank BisQ on both sides, a significant increase in RNA affinity is observed (over an 8 °C increase in melting temperature, Tm). Altogether, γ-PNAs are a beneficial chemical modification that leads to brighter FIT-PNAs with improved binding affinities to targeted RNA.

Graphical abstract: Gamma-FIT-PNAs as sensitive RNA probes

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2025
Accepted
22 Dec 2025
First published
20 Jan 2026
This article is Open Access
Creative Commons BY-NC license

RSC Chem. Biol., 2026, Advance Article

Gamma-FIT-PNAs as sensitive RNA probes

M. K. Gupta, S. Maree and E. Yavin, RSC Chem. Biol., 2026, Advance Article , DOI: 10.1039/D5CB00292C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements