Programmable synthesis of alkaloidal frameworks integrating Michael acceptor generates covalent probes for targeting POLE3 in HBV replication

Abstract

The growing need for effective HBV treatments and lead compounds with novel mechanisms prompted us to explore synthetic strategies for generating skeletally diverse alkaloidal Michael acceptors. Our approach uniquely embeds Michael acceptors directly within multicyclic alkaloid-inspired frameworks, exploiting the azepinoindole scaffold—a privileged structure in indole alkaloids. A single-step assembly between the versatile intermediate 13 with methyl propiolate 14 or its derivatives enabled the rapid and divergent synthesis of six alkaloidal Michael acceptors (1520). This strategy facilitated systematic diversification of three-dimensional functional group arrangements and precise tuning of the electronic and steric properties of the embedded α,β-unsaturated carbonyl moieties. The optimal hit 15 inhibited hepatitis B surface antigen (HBsAg) production with an IC50 of 2.48 μM and significantly reduced levels of covalently closed circular DNA (cccDNA), the master template of HBV. Unlike existing nucleoside/nucleotide-based anti-HBV drugs that primarily inhibit reverse transcription, the alkaloidal Michael acceptor 15 suppressed both cccDNA and relaxed circular DNA (rcDNA) levels, suggesting a potential pathway toward a functional HBV cure. Our study also streamlined the target identification by leveraging the covalent binding properties of the Michael acceptors and the operational simplicity of biotin- or fluorescent-tag attachment via a pre-installed alkyne moiety. Competitive pull-down experiments identified several potential target proteins, involving DNA polymerase epsilon subunit 3 (POLE3). Notably, the alkaloidal Michael acceptor 15 was demonstrated to covalently modify Cys51 in POLE3, providing new insights into virus–host interactions and opening novel avenues for targeted anti-HBV therapies. This approach represents a significant advance beyond traditional screening methods and underscores the potential of skeletally diverse alkaloidal Michael acceptors in antiviral drug development.

Graphical abstract: Programmable synthesis of alkaloidal frameworks integrating Michael acceptor generates covalent probes for targeting POLE3 in HBV replication

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
15 Oct 2025
Accepted
18 Oct 2025
First published
21 Oct 2025
This article is Open Access
Creative Commons BY-NC license

RSC Chem. Biol., 2026, Advance Article

Programmable synthesis of alkaloidal frameworks integrating Michael acceptor generates covalent probes for targeting POLE3 in HBV replication

N. Kaneko, M. Himeno, Y. Kobayashi, R. Tanifuji, H. Kubota, H. Mizoguchi, M. Muroi, T. Suzuki, M. Sugiyama, N. Dohmae, H. Osada, T. Kido, A. Miyajima and H. Oguri, RSC Chem. Biol., 2026, Advance Article , DOI: 10.1039/D5CB00268K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements