First principles study of alkali metal-decorated bismuth selenide for hydrogen storage applications
Abstract
The identification of novel two-dimensional materials is often highly valued because of their extraordinary characteristics and prospective uses. This study presents a new bismuth selenide (Bi2Se3) monolayer based on density functional theory (DFT). Its bandgap, state density, and mobilities are determined and examined. This study investigates hydrogen storage in Bi2Se3 adorned with alkali metal (Li/Na and K) atoms. The optimal adsorption site for alkali metal (AM) atoms on the Bi2Se3 monolayer is located above an Se atom. The AM atoms are physically adsorbed on Bi2Se3, and the electronic charge shifts from these to the Bi2Se3 monolayer. In all scenarios examined, hydrogen molecules are physically adsorbed onto AM–Bi2Se3 complexes, suggesting that these systems could be employed for hydrogen storage. The K–Bi2Se3 monolayer shows the highest hydrogen storage capacity, with one potassium atom adsorbing up to 19 hydrogen molecules, while both Na–Bi2Se3 and Li–Bi2Se3 could adsorb 18 hydrogen molecules. It is estimated that the hydrogen-storage gravimetric capacities of AM–Bi2Se3 are within the US-DOE criteria, where the adatom coverage reaches about 6.71 wt% for K, 6.52 wt% for Na, and 6.66 wt% for Li.