Issue 7, 2025

Renewable flower-based dye-sensitized solar cells using natural dye and natural carbon counter electrode

Abstract

To advance the application of renewable biowaste in the renewable energy field, biowaste-derived natural dyes (BND) and biowaste-derived carbon materials (BCM) were individually prepared from five common flowers as raw materials and then facilely integrated into dye-sensitized solar cells (DSSCs). The five extracted BNDs contained anthocyanins with subtly different molecular structures, which were employed as photosensitizers to assemble mono-biowaste based devices with a Pt counter electrode, each of which showed a significantly different conversion efficiency (η), varying from 0.17% to 0.43%. The five pyrolyzed BCMs with an amorphous structure were used as counter electrodes to configure mono-biowaste based devices with the photosensitizer N719, and their η values ranged between 1.08% and 2.13%. The high efficiency of the BCM-based devices was mainly derived from their unique microstructure and the N,S-codoped oxygen-group-containing carbon skeleton of the BCM, which provided more catalytic active sites for reduction of the electrolyte. A dual-biowaste device based on crape myrtle violet flower with an η of 0.181% was finally fabricated by using the corresponding BND and BCM. Moreover, a combination strategy was carried out by introducing the BND extracted from willow leaf into the cell with the pyrolyzed crape myrtle violet flower BCM, resulting in an enhanced η of 0.32%.

Graphical abstract: Renewable flower-based dye-sensitized solar cells using natural dye and natural carbon counter electrode

Supplementary files

Article information

Article type
Paper
Submitted
28 Mar 2025
Accepted
27 May 2025
First published
31 May 2025
This article is Open Access
Creative Commons BY-NC license

Energy Adv., 2025,4, 947-957

Renewable flower-based dye-sensitized solar cells using natural dye and natural carbon counter electrode

S. Xu, P. Huang, W. Zhong, Y. Luo, H. Fu, Z. Xiao, H. Jin and Y. Liu, Energy Adv., 2025, 4, 947 DOI: 10.1039/D5YA00086F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements