Issue 16, 2025

Wireless, flexible, and disposable sensing devices enabling real-time long-term patient medical care for pressure injury prevention

Abstract

Pressure injuries have become one of the most prevalent long-term healthcare challenges, and efficient detection of pressure on body tissues, especially over bony prominences, is essential for determining appropriate relief interventions. In the post-epidemic era, heightened awareness of infection risks and personal healthcare has strongly demanded disposable medical devices with durable functionality. In response, we introduce a wireless, flexible, and disposable sensing device designed for long-term stress monitoring and pressure injury prevention on the human-body. A porous paper matrix embedded with CNT–PEDOT composites establishes compressible conducting networks, enabling sensitive external pressure detection through piezoresistive effects. The dispersion of CNT–PEDOT aggregates and their distinctive gradient distribution throughout the porous paper structure provide controlled conductivity and sensitivity within the device. A multilayer design is achieved through selective drop-casting and preferential stacking forms alternating conductive/nonconductive interfaces, effectively modulating the device's electrical properties. With an outstanding sensitivity of 40.09 kPa−1, a rapid response time of 125 ms, a broad pressure detection range of 0 to 100 kPa, good durability exceeding 1000 cycles, and consistent reproducibility across 500 times, this integrated sensor demonstrates strong potential for medical device applications. When integrated with a bluetooth module, the multichannel wireless detection system enables real-time remote monitoring of human movement. It accurately identifies various body postures with high sensitivity, specificity, and accuracy, achieving near 100% accuracy in clinical tests. In practice, the proposed sensor offers a promising solution for physiological signal monitoring, addressing both the cost and efficiency challenges associated with manufacturing disposable medical equipment. This approach is anticipated to significantly support caregivers in hospitals, long-term care facilities, and community home-care settings by facilitating effective, science-based pressure injury prevention in long-term patient management.

Graphical abstract: Wireless, flexible, and disposable sensing devices enabling real-time long-term patient medical care for pressure injury prevention

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2024
Accepted
13 Mar 2025
First published
17 Mar 2025

J. Mater. Chem. C, 2025,13, 7943-7956

Wireless, flexible, and disposable sensing devices enabling real-time long-term patient medical care for pressure injury prevention

T. Chang, C. Chien, E. I. Guerra, T. Wang, C. Huang, Y. Lin, J. Chang and W. Liao, J. Mater. Chem. C, 2025, 13, 7943 DOI: 10.1039/D4TC05320F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements