Fabrication of a solution-processed low voltage TFT by using colloid 2D ZnO nanosheets and its application as a UV photodetector†
Abstract
ZnO nanostructures have been extensively employed in optoelectronic devices because of their unique optoelectronic properties; however, these devices have been developed using physical vapor deposition techniques, which are costly and need a state-of-the-art fabrication facility. Hence, a solution-processed, cost-effective, low-temperature method is required for the large-scale fabrication of 2D material-based electronic devices. In this contribution, we report template, polymer, and surfactant-free wet chemical synthesis of 2D ZnO nanostructures having dimensions of ∼200 nm and thickness of ∼30 nm following the hydrothermal method. Detailed structural, morphological, and optical investigation revealed the formation of a pure hexagonal wurtzite phase of ZnO nanosheets. Utilizing the as-synthesized nanosheets, solution-processed thin film transistors (TFTs) are fabricated under low annealing temperatures that exhibit a high carrier mobility of 8.05 cm2 V−1 s−1 and an on–off ratio of ∼105. Also, these TFTs show high photosensitivity and can be used as UV detectors. Thus, our study highlights low-temperature facile fabrication of 2D ZnO TFTs, which may have promising applications in electronic displays, logic circuits, UV detectors, biosensors, and portable electronics.