Issue 14, 2025

Impact on silica particle physical characteristics of co-condensed alkoxide precursors

Abstract

Understanding the condensation process of two precursors in the Stöber process is crucial to enhance the complexity and applicability of silica hybrids. We present a simple and effective method to prepare functional silica hybrid particles with tunable properties through the co-condensation of tetraethoxysilane and an organoalkoxide precursor using a modified Stöber process. Three organoalkoxide precursors have been studied: (3-mercaptopropyl)triethoxysilane, (3-cyanopropyl)triethoxysilane, and (3-aminopropyl)triethoxysilane. All three investigated systems produce functional silica hybrid particles, as confirmed by various characterization techniques. Scanning transmission electron microscopy and nitrogen sorption analysis demonstrated that features such as the microstructure could be tailored by the careful selection of the second precursor. A drastic increase in the specific surface area can be obtained with 3cyanopropyltriethoxysilane: 270 m2 g−1 compared to 17 m2 g−1 in the unfunctionalized silica particles. Other important characteristics such as the degree of condensation and surface charge can also be influenced by precursor choice. The enhanced reactivity of 3-aminopropyltriethoxysilane yields a higher degree of particle functionalization. Nanoscale chemical mapping has been performed using energy-dispersive Xray spectroscopy and Auger spectroscopy. Homogeneous distribution of the functionalities within the hybrid particles occurs. The present work gives tools to easily tailor functional silica particles, thus providing simple ways to tune their properties to meet a wide range of applications.

Graphical abstract: Impact on silica particle physical characteristics of co-condensed alkoxide precursors

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
08 Oct 2024
Accepted
21 Dec 2024
First published
05 Mar 2025
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2025,13, 7318-7326

Impact on silica particle physical characteristics of co-condensed alkoxide precursors

F. Bevilacqua, C. Cibaka-Ndaya, P. Sanz Camacho, S. Lacomme, E. Durand, J. Ledeuil, J. Allouche, C. Boissière, C. Sanchez and G. L. Drisko, J. Mater. Chem. C, 2025, 13, 7318 DOI: 10.1039/D4TC04305G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements