Issue 7, 2025

Defect-induced new persistent cyan-emitting rare-earth-free phosphors for dynamic anti-counterfeiting and plant-growth LED applications

Abstract

Initially, a self-activated Sr2Zr(SiO3)4 phosphor was developed by substituting Sr2+ for Ca2+ in the reported Ca2Zr(SiO3)4. The XRD pattern of the synthesized Sr2Zr(SiO3)4 crystal matched that of monoclinic Sr3Y2Si6O18 (m-Sr3Y2Si6O18, cyclosilicate structure), and this discovery led to the development of a novel cyan-emitting Sr2Zr2(SiO3)6 phosphor with persistent luminescence (PersL). XRD and HRTEM analysis identified the presence of a secondary orthorhombic Sr3Zr2O7 phase. Under 284 nm excitation, the PL emission of the host exhibited broadband centred at 485 nm, originating from the Zr4+ ions and lattice defects. Additionally, the host showed cyan PersL with a duration of 60 s. The addition of an NH4Cl flux enhanced PersL intensity and duration of the host material (>60 s). Bi3+ doping and post-annealed vacuum treatment increased the oxygen vacancy compared to Sr2Zr2(SiO3)6:12 wt% NH4Cl phosphor, as evidenced by XPS analysis. After Bi3+ incorporation, an additional PL band centred at 620 nm was observed due to the oxygen-vacancy-induced electronic localisation around the Bi3+ ions. The optimised vacuum-treated phosphor Sr2Zr2(SiO3)6:12 wt% NH4Cl,0.02Bi3+ exhibited enhanced PersL intensity and duration (90 s) due to the presence of additional shallow electron traps. This vacuum-treated phosphor has been used in dynamic anti-counterfeiting applications by mixing it with red-emitting phosphors. Sr2Zr2(SiO3)6:12 wt% NH4Cl,0.02Bi3+ is the first cyan-emitting rare-earth-free PersL phosphor used in dynamic anti-counterfeiting and security ink applications. Furthermore, a Sr2Zr2(SiO3)6:12 wt% NH4Cl/Mg3Al2GeO8:0.005Mn4+,0.27Ba2+ mixture has been developed for use in plant growth LEDs, covering the absorption spectra of plant phytochrome (Pr) and chlorophylls.

Graphical abstract: Defect-induced new persistent cyan-emitting rare-earth-free phosphors for dynamic anti-counterfeiting and plant-growth LED applications

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Oct 2024
Accepted
18 Dec 2024
First published
06 Jan 2025

J. Mater. Chem. C, 2025,13, 3554-3566

Defect-induced new persistent cyan-emitting rare-earth-free phosphors for dynamic anti-counterfeiting and plant-growth LED applications

T. K. K., S. C. Lal, R. T. Parayil, S. K. Gupta and S. Das, J. Mater. Chem. C, 2025, 13, 3554 DOI: 10.1039/D4TC04248D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements